Adaptive Mesh Refinement and Superconvergence for Two-Dimensional Interface Problems

نویسندگان

  • Huayi Wei
  • Long Chen
  • Yunqing Huang
  • Bin Zheng
چکیده

Adaptive mesh refinement and the Börgers’ algorithm are combined to generate a body-fitted mesh which can resolve the interface with fine geometric details. Standard linear finite element method based on such body-fitted meshes is applied to the elliptic interface problem and proven to be superclose to the linear interpolation of the exact solution. Based on this superconvergence result, a maximal norm error estimate of order O(h1.5) is obtained without using the discrete maximum principle. The data structure and meshing algorithms, including local refinement and coarsening, are very simple. In particular, no tree structure is needed. An efficient solver for solving the resulting linear algebraic systems is also developed and shown be robust with respect to both the problem size and the jump of the diffusion coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?

~ We study. adaptive finite element methods for elliptic problems with domain corner singularities. Our model problem is the two dimensional Poisson equation. Results of this paper are two folds. First, we prove that there exists an adaptive mesh (gauged by a discrete mesh density function) under which the recovered.gradient by the Polynomial Preserving Recovery (PPR) is superconvergent. Second...

متن کامل

Domain Decomposition and hp-Adaptive Finite Elements

In this work, we report on an ongoing project to implement an hp-adaptive finite element method. The inspiration of this work came from the development of certain a posteriori error estimates for high order finite elements based on superconvergence Bank and Xu [2003a,b], Bank et al. [2007]. We wanted to create an environment where these estimates could be evaluated in terms of their ability to ...

متن کامل

The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation

In this manuscript we construct simple, efficient and asymptotically correct a posteriori error estimates for discontinuous finite element solutions of scalar firstorder hyperbolic partial differential problems on triangular meshes. We explicitly write the basis functions for the error spaces corresponding to several finite element spaces. The leading term of the discretization error on each tr...

متن کامل

Superconvergence and a Posteriori Error Estimates of a Local Discontinuous Galerkin Method for the Fourth-order Initial-boundary Value Problems Arising in Beam Theory

Abstract. In this paper, we investigate the superconvergence properties and a posteriori error estimates of a local discontinuous Galerkin (LDG) method for solving the one-dimensional linear fourth-order initial-boundary value problems arising in study of transverse vibrations of beams. We present a local error analysis to show that the leading terms of the local spatial discretization errors f...

متن کامل

Global Convergence of a Posteriori Error Estimates for the Discontinuous Galerkin Method for One-dimensional Linear Hyperbolic Problems

In this paper we study the global convergence of the implicit residual-based a posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional linear hyperbolic problems. We apply a new optimal superconvergence result [Y. Yang and C.-W. Shu, SIAM J. Numer. Anal., 50 (2012), pp. 3110-3133] to prove that, for smooth solutions, these error estimates at a fixed time conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014